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Abstract

The performance of the respected Frank-Zook penetration algorithm (Zook,
J. A., Frank, K, and Silsby, G. F., “Terminal Ballistics Test and Analysis
Guidelines for the Penetration Mechanics Branch,” BRL-MR-3960, January 1992)
is examined in light of an anticipated class of target technologies involving
laminated targets whose layers are thin relative to the projectile diameter. This
class of target designs encompasses multifunctional integral armors and, in the
limiting case, armors incorporating functionally-graded materials. Such armor
classes represent potential candidates for the Army’s Future Combat System.
The ability to effectively model the ballistic response of advanced armors is
paramount to accurately assessing system lethality and vulnerability for future
weapon systems and platforms.
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ABSTRACT

The performance of the respected Frank-Zook
penetration algorithm (Zook ez al., 1992) is examined in
light of an anticipated class of target technologies involving
laminated targets whose layers are thin relative to
the projectile diameter. This class of target designs
encompasses multifunctional integral armors and, in the
limiting case, armors incorporating functionally-graded
materials. Such armor classes represent potential candidates
for the Army’s Future Combat System. The ability to
effectively model the ballistic response of advanced armors
is paramount to accurately assessing system lethality and
vulnerability for future weapon systems and platforms.

1. MOTIVATION

The Survivability/Lethality Analysis Directorate
(SLAD) and the Weapons and Materials Research
Directorate (WMRD) of the Army Research Laboratory
(ARL) are jointly working in the area of Target Interaction
Lethality/Vulnerability (TILV) - Ballistic Damage of
Advanced Material and Armor Systems. SLAD is
upgrading their MUVES S2 suite of vulnerability/lethality
models (Hanes et al., 1988) as part of the TILV program.
Vulnerability/lethality models are being constantly
challenged by new, sophisticated and complicated armor
technologies. Although there can be tremendous variations
in these new technological advances, they can be
generalized under the following categories: spaced and
layered solutions, reactive and passive appliqués, ceramic
solutions, impact-energy absorption techniques, advanced
metals and matrix geometries, functionally graded materials
(FGMs), electromagnetic techniques, and polymer solutions
(transparent armors). These new armor design technologies
are surfacing as potential candidates for both foreign and
U.S. ground/air combat systems. The U.S. Army’s Future
Combat System may include many of these armor classes.

To understand the implications of these new ballistic-
protection technologies before they become fielded on
future systems, this collaborative effort has been established
to develop a physically-based penetration model that is
suitable for implementation into the MUVES S2 suite of
models. A “building block” approach has been adopted
wherein the currently utilized penetration equations are first
examined and refined to better estimate the ballistic
performance of laminated spaced armor solutions versus
kinetic energy projectiles, with an eye towards eventually

developing penetration equations to accurately estimate the
ballistic response of FGMs.

Traditional penetration methodologies, like those of
Tate (1967) and Alekseevskii (1966), were developed for
rods penetrating idealized semi-infinite target blocks. As
such, target resistance variations along the shotline were not
an issue. Later analyses (Wright and Frank, 1988; Tate,
1986, Walker and Anderson, 1995) showed that the
property of target resistance represents an integral of -
stresses throughout the plastic zone in the target, ahead of
the rod/target interface. In the course of penetration, when
this plastic zone crosses the interface between two adjacent
target plies, one may infer that the local target properties
should be properly composed of material properties from
both of the entrained plies. In this manner, the transition of
“effective” material properties penetrating from one target
ply into the next should be continuous, rather than discrete.

The Frank-Zook (FZ) penetration algorithm (Zook et
al., 1992), used widely within the ARL for both terminal
ballistic evaluation and vulnerability assessment, considers
this interply transition process. However, since it was
developed when long rods and relatively thick target
elements represented the prevalent engagement scenario, the
FZ algorithm computes this transition effect a single target
element at a time (i.e., it only senses one target element in
advance).

The FZ algorithm can accurately sense and respond to
the situation where, for example, the penetration channel
proceeds from a weak target element into a strong target
element. The effective resistance offered by the target
would gradually and smoothly transition from the weak
value, just reaching the strong value of resistance as the
penetrator/target interface reaches the strong target element.
If a rod of diameter D is penetrating target element i, the
influence of target element i+1 upon the effective target

resistance H is evaluated by the FZ model as

— —ZTM/

H=H +H, -H)e 7, (1)
where the H; are the target-element component resistances,
and T,,; is the residual, normal thickness of target element i
yet to be penetrated. In the absence of this modeling
enhancement, the transition in target resistance would be
unrealistically abrupt.

However, implementing this realistic enhancement
within the FZ algorithm is accomplished only a single
interface at a time (i.e., target elements i+2, etc. do not affect




the effective resistance). Thus, if the finite target volume
contributing to the target resistance realistically entrained
several target/target interfaces, the FZ algorithm would only
account for the one closest to the penetrator/target interface.
Such a situation can realistically arise in several situations.
One is where there exists a target composed of elements that
are thin compared to the penetrator diameter, possibly as in
the case of targets designed for small- and medium-caliber
threats. In this case, the plasticity zone will entrain not two,
but a Jarger number of target element layers simultaneously
(Fig. 1). For such targets, the FZ algorithm will be ill-suited
to model the transition of “effective” target resistance and
density along the shotline. Though the problem can be quite
severe when the target-layer thickness is a fraction of the
projectile diameter, the effect is still evident to a much lesser
extent, even as the target-element thickness is increased to
several projectile diameters.

Another example in which several target/target
interfaces could be entrained in the zone of target material
contributing to target resistance is when a target element is
barely clipped by the penetrator shotline. This latter
situation can arise even if the individual target elements are
otherwise thick. And since, from the point of view of a
statistical vulnerability computation, the process of selecting
and calculating penetrator shotline geometries is fullv
automated, the vulnerability analyst has little or no control
in preventing very thin target elements from arising along a
given shotline geometry, even for large-caliber targets.

2. DISCUSSION

A remedy to these types of problems is offered and
accomplished by a novel adaptation of elements from a
model by Walker and Anderson (1995) into the FZ
framework. In so doing, the target’s material properties and
nonsteady-kinematic properties are dynamically composed
via an integration through the plastic zone in the target,
ahead of the rod/target interface. Though the Walker-
Anderson model does not even address the issue of
multilayer targets, the assumed flow field kinematics of
their model provide enough information to isolate and
dynamically calculate an integrated contribution from each
layer in a given laminate target towards the aggregated or
“effective” target properties.

Zone

Fig. 1. Plastically entrained elements contribute to
“effective” target properties, e.g., resistance H = H(i, j, k, m).

This integration is accomplished by using the extended
Bernoulli equation (Segletes and Walters, 1999) to yield the
relation that governs the rod/target interaction. The
equation includes aggregated terms summed from all of the
layers of target material entrained in the plastic zone:
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where k», pr, Y, V, and s are the shape factor, density,
strength/resistance, velocity, and plastic-zone extent in the
rod of length L and diameter D, while k, p, H , U and «
are the corresponding values for the target interface. The X
terms are nonsteady-influence terms defined below.
Namely, for a plastic zone of thickness (- 1) times the
crater radius R, spanning across target elements i =m to n,
of density pr, where the (i—1) — / intra-target interface is
positioned at z=(B — 1)R with respect to the rod/target
interface (with B.=1, B. = @), the following generalized
expressions for the target parameters are obtained:
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These results reduce to those of Walker and Anderson
(1995) for the case of monolithic targets, wherein
m=n=1, and the limits on 8 correspond to the extent of
the plastic zone as B, =1, and B, = .

3. RESULTS

A test series was conducted by personnel at ARL'’s
Experimental Facility 110, using the 14.5 mm B32 armor-
piercing projectile, weighing 63.5 g and consisting of a
53 mm, 41 g hardened-steel (Rc 65) core surrounded by a
brass jacket (Fig. 2). The gun-breech powder loading was
altered to systematically vary the projectile velocity.

The projectile was modeled as a 63.5 g homogeneous
steel slug, 66.5mm long x 12.45mm diameter, equaling the
overall length and mass of the B32 projectile. Because the
sharpened B32 core penetrates as a rigid body, the shape
factor, kr, of the target flow was set to 0.15 rather than 0.5,
reflecting the reduced momentum transfer imparted to a
sharpened body as compared to the stagnation flow of blunt-



body penetration. This revised 4 value is based on the fact
that the force required to turn an inviscid flow through an
angle of 6 is proportional to (1 —cos6). This suggests that
kr take on the value 1/2 (1 — cosd), where § is the half-angle
of the rigid-projectile nose, approximately 45° for the tip of
the B32 core. It is important to note that without accounting
for the influence of both the brass-jacket mass and the
pointed aspect of the rigid core, the calibration tests of
B32 penetration into “semi-infinite” 5083 aluminum
underestimated the penetration, as shown in Fig. 3.

Into semi-infinite and finite-plate targets, the FZ and
revised models both perform well, as anticipated and shown
in Fig. 4. The material modeling parameters for all
calculations are given in Table 1. Values for target
resistance were selected to fit the data, but are compatible
with various analytical estimation techniques. Plastic-zone
extent values will be subsequently discussed. The slight
discrepancy between models was caused by introducing the
integrated (i.e., “effective”) and nonsteady terms of
equation (2) in the revised modeling approach.

However, to appreciate the distinction between the
original and revised methodology, consider the 23 mm plate
of 5083 aluminum that composed the target of Fig. 4b, and
augment the target by adding a 0.8 mm mild-steel backing
plate to the rear of the aluminum plate. Fig. 5 presents the
data as well as modeling predictions, including those for the
original configuration without the steel backing. The
addition of this thin plate should have a minimal effect
on the ballistic resistance of the target, which is indeed
reflected in the data. And while the revised modeling

Table 1. Material Modeling Parameters’
Projectile Material o Y
(kg/m) (GPa)
Steel (Rc65) 7850 4.46

Target Material pr H Plastic Zone Extent
(kg/m*) (GPa) PZE/D
5083 AL (BHN 103). 2700 1.92 5.1
. Mild Steel BHN93) 7850  2.09 35
HHA (BHN 500) 7850 6.15 35
Acrylic 1190  0.62 3.5

"Target rear surfaces modeled with 0.5GPa spall strength

%

Fig. 2. The B32 armor-piercing core and projectile.

corroborates this minimal influence, the original model
improperly accentuates the effect. However, it is not the
resistance of steel backing that in and of itself produces this
effect in the original model. Rather, the error is introduced
while penetrating the aluminum plate, since the rod is at that
moment unaware that the target rear surface exists. As
such, it is the failure to perceive incipient breakout (and the
associated diminution of resistance) while penetrating the
aluminum that results in the underestimation of residual
velocity, V,, by the original model.
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Fig. 3. Penetration of B32 into 5083 aluminum using
various modeling assumptions.
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Fig. 4. Comparison of FZ model and revised model for B32
against (a) semi-infinite 5083 aluminum, and (b) 23 mm
plate of 5083 aluminum at 0° obliquity.




As a second example, consider the same 23 mm target
of 5083 aluminum, this time backed by a 9.6 mm high-hard
armor (HHA) plate. Even though the HHA element is not
nearly so thin as the mild-steel backing of the previous
example, it is still thin enough, relative to the 12.45 mm
projectile core, for the original model to suffer the identical
problem for the same reason, as shown in Fig. 6. For the
original model to better match the data, the HHA target
resistance would have to be lowered nearly 40% to an
artificially low value of 3.75 GPa.

To remove any lingering doubt that the root of the
original model’s problem arises from its treatment of
subsequent target elements only one at a time, consider the
aluminum/HHA target under discussion with a 2.8 mm
acrylic interply between the aluminum and HHA. While it
may be surmised that the interply’s contribution
to the target’s ballistic resistance should be minimal, that
influence should nonetheless be a trend of slight
strengthening. Thus, the residual-velocity curves of Fig. 7
depict both the inconsistency that can occur when the model
can only sense one advance target-element at a time, as well

1000

Without backing

800 4

@
E
> 600 -
@® Experiment: Target without backing
O Experiment: Target with thin backing
400 - % —— Revised model: With & without backing
/ ~— — Original (FZ) model: With & without backing
500 600 700 800 900 1000 1100
V, (m/s)
Fig. 5. Comparison of FZ model and revised model for
B32 against 23 mm plate of 5083 aluminum with and
without 0.8 mrm mild-steel backplate.
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Fig. 6. Comparison of original and revised models for B32
vs. target consisting of 23 mm 5083 aluminum plus 9.6 mm
HHA.

as the correction offered by the revised modeling. Contrary
to both expectation and data trend, adding the acrylic
interply significantly weakens the overall target resistance,
according to the original methodology. The cause for this
inconsistent behavior may be understood from Fig. 8, which
portrays the target resistance as a function of location
through the target.

3.1 Analysis of Model Parameter Influence

In particular, Fig. 8 depicts how the original model
perceives these two target configurations quite differently.
For the baseline case without the interply (Fig. 8a), the FZ
algorithm properly senses the influence of the strong HHA
plate while penetrating the 5083 aluminum, but fails to
detect the rear surface of the target prior to actually entering
the HHA element. Thus, the resistance undergoes a large
and instantaneous correction upon entering the HHA plate,
since the target free surface then becomes recognized.
Because of the overestimated resistance while penetrating
the aluminum, the original algorithm underpredicts the
residual velocity (V)) exiting the baseline target. Once in the
HHA plate, only one interface (i.e., the rear surface) is
entrained in the target’s plastic zone. Consequently, the two
models exhibit nearly identical behavior at this point; the
small differences are attributable to the difference between
the FZ formulation for resistance given by eqn (1) and the
revised formulation given by eqn (4).

For the test case containing the acrylic interply
(Fig. 8b), the influence of the hard HHA plate is not sensed
by the FZ algorithm while penetrating the 5083 element
until the acrylic is actually reached. Rather, the 5083 plate
senses only the weak acrylic interply. As such, the original
algorithm underestimates the target resistance in the
aluminum and overpredicts the residual velocity exiting the
test-case target.

In contrast, the revised algorithm, by simultaneously
accounting for all the relevant target elements and free

@ Experiment: Target without interply Without interply _~ J
so04 O Experiment: Target with interply P2 V2
—— Revised model: With & without interply Ve
— — Original (FZ) model: With & without interply -
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Fig. 7. Effect of 2.8 mm interply layer of acrylic on
original and revised models for B32 vs. target consisting
of a 23 mm 5083 aluminum plus 9.6 mm HHA baseline.



surfaces in proportion to their actual influence, properly
captures both the magnitude and sense of the ballistic trend.
While the original formulation can experience large
instantaneous jumps in target resistance [recall that one
- purpose of eqn (1) was to help avoid this occurance], even
the revised formulation seen in Fig. 8 experiences a small
instantaneous jump of around 0.35 GPa at the rear surface of
the 5083 target element. The source of this jump is the
difference in plastic-zone extent modeled for the aluminum,
compared with that for the other target materials.

Before discussing the influence of the plastic-zone-
extent parameter on results of the revised model, the
magnitude of this target-resistance jump represents the error
introduced by assuming that the flow field in the plastic
zone obeys the spatially hemispherical function selected by
Walker and Anderson (1995), even as that flow field
. extends across material interfaces. The use of this flow-
field assumption across material interfaces is a valid
criticism of the revised formulation, reflecting the fact that
the actual plastic zone shape ahead of the rod/target
interface will not, in reality, remain hemispherical across an

—— Revised Model - No Interply

8 1 _ — Original Model - No Interply d
e
Ve - '
5 - l
- |
-~
- |
4 Pl
© - [
§ - |
~— 3 K
Jes}

0 T T T
0 10 20 30

z(mm)

(@)

——— Revised Mode! - with Interply
8 1 . _ Original Model - with Interply /1

H(GPa)

z{mm)
(b)
Fig. 8. Target resistance vs. location for target consisting of
23 mm 5083 aluminum plus 9.6mm HHA, (a) without
interply, (b) with 2.8 mm acrylic acrylic interply.

interface of dissimilar materials. However, despite this
criticism, the assumption is nonetheless a significant
improvement over the original formulation in this regard, as
reflected in Fig. 8. A future improvement to the revised
model can be achieved by transitioning the plastic-zone

.extent gradually, as an interface is approached, rather than

abruptly, as is currently done. With such an improvement,
the target resistance would always remain continuous with
position.

As listed in Table 1, the plastic-zone extent (PZE) in
the 5083 aluminum was taken as 5.1 projectile diameters,
compared with a value of 3.5 for the other target materials.
While this alteration was done to improve the fit to data, an
analytical method for estimating this parameter from
material properties is planned for future work. This
alteration to the aluminum’s plastic-zone extent provides an
opportunity to study this parameter’s effect on the revised
model. The influence of an alteration in aluminum’s PZE,
from a value of 5.1 to 3.5 on the revised-model predictions,
is shown in Table 2 for data from various figures. And
while the impact on the model predictions of Fig. 7 may
seem large, much of that is attributable directly to the fact
that the low-velocity data is very close to the ballistic limit,
where small model changes of any type can have a large-
percentage influence on the residual velocity. For the data
in Fig. 7, the influence of the cited change in PZE drops to
7% for striking speeds above 700 my's, and to under 2% by
1000 m/s striking speed. It appears that model results, at
least in the cases studied to date, are not overly sensitive to
the selection of this parameter.

4. CONCLUSIONS

When investigating the ability of the current FZ
penetration algorithm to predict the ballistic performance of
targets comprising thin (or functionally-graded) elements, a
deficiency was noted arising from the algorithm’s ability to
examine the influence of only one leading target element at
a time. A remedy has been offered that incorporates
elements of a model by Walker and Anderson (1995) into
the existing FZ framework. Both models were compared
against data for the 14.5 mm B32 penetrator against several
target configurations designed to probe the perceived
algorithm deficiency. The revised model compares well to
data, for several different test cases, offering notable
improvement over the original methodology for the cases

Table 2. Influence of Plastic-Zone-Extent Variation

On What Fig.  Influence of PZE variation
from 5.1t03.5xD

Penetration 3 <0.5%.

Residual Velocity 5 <2%

Residual Velocity 7 ~ 30% at V, = 580m/s

Residual Velocity 7 ~ 7% at V, = 700m/s

Residual Velocity 7 < 2% at V, = 1000nv/s




studied. These modeling remedies and enhancements are
being considered for incorporation into the Army Research
Laboratory’s MUVES code, as part of ARL’s
vulnerability/lethality calculation methodology.
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